
Discrete Event Process Modeling Nota-
tion (DPMN)

Language Definition
Version 0.1

Gerd Wagner
Brandenburg University of Technology, Germany

This document is licensed under a Creative Commons Attribution 4.0 International License.
Publication date: 7 March 2018. Available online at http://sim4edu.com/reading/DPMN.pdf.
We encourage readers to report any ambiguities, inconsistencies, or inaccuracies they

may find to G.Wagner@b-tu.de.

Summary

DPMN is a BPMN-based diagram language for making (computational) process design models for dis-
crete event simulation. It combines the intuitive flowchart modeling style of BPMN with the rigorous
semantics provided by the event scheduling arrows of Event Graphs and the event rules of the Object-
Event Modeling and Simulation paradigm. While BPMN uses XML Schema as its default type definion
language, DPMN uses UML Class Diagrams as its default (data, object and event) type definion lan-
guage. As opposed to BPMN Data Objects, DPMN Data Objects instantiate an object type defined by
an information model expressed in the form of a UML Class Diagram. A DPMN model has a formal se-
mantics in terms of an Abstract State Machine whose state structure is defined by an object-oriented
signature and whose transitions are defined by event rules capturing causal regularities.

Contents

1. Introduction ... 1
2. Examples

1. Example 1: An Event-Based Inventory Management Model ... 6
2. Example 2: An Event-Based Service Desk Model .. 11
3. Example 3: An Activity-Based Service Desk Model ... 16
4. Example 4: An Activity-Based Service Network Model ... 19
5. Example 5: Modeling a Network of Processing Nodes .. 22

3. DPMN Language Models... 24
4. DPMN Execution Semantics ... 24

1 Introduction

The Discrete Event Process Modeling Notation (DPMN) extends and modifies the language of BPMN
Process Diagrams for the purpose of making event rule design models and process design models, which
are computationally complete process specifications that can be used for Discrete Event Simulation
(DES) modeling. DPMN preserves large parts of BPMN's vocabulary, visual syntax and informal seman-
tics. It supports two types of diagrams: event rule design diagrams and process design diagrams, which
consist of an integrated set of event rule design diagrams.

The development of DPMN is guided by the modeling and simulation concepts of the Object-Event
Modeling and Simulation (OEM&S) paradigm: object types, event types, event rules and activity types,
see [1]. DPMN is the process design modeling language of choice in OEM&S. DPMN's formal semantics
is obtained by considering a DPMN process design model as a composition of event rule design models
specifying a set of event rules that act as transition functions such that the Abstract State Machine se-

Chapter 0:

Page 1 (of 25)

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by/4.0/
http://sim4edu.com/reading/DPMN.pdf

mantics proposed in [2] can be applied.
The main ideas underlying the development of DPMN can be summarized as follows:

1. Flowchart-style diagrams provide an intuitive visual syntax for process modeling.
2. A sufficiently expressive flowchart language must include events, activities and (conditional and

parallel) branching.
3. Process design models need to express computationaly complete process specifications.
4. BPMN's Sequence Flows do not have a clear computational (control flow) semantics. The event

scheduling semantics of Schruben's Event Graphs (see Section 1.4), provides a computational se-
mantics for Sequence Flows leading to event circles.

5. Since they define transition functions, the event rules of OEM&S, which allow capturing causal
regularities for describing the dynamics of a system, provide an operational (transition system) se-
mantics for generalized forms of Event Graphs.

6. Constructing a process design model as a composition of event rule design models provides a formal
semantics for DPMN process diagrams: the Abstract State Machine semantics of [2].

1.1 Model-Driven Engineering

Model-Driven Engineering (MDE), also called model-driven development, is a well-established paradigm
in Information Systems and Software Engineering. In MDE, there is a clear distinction between three
kinds of models as engineering artifacts resulting from corresponding activities in the analysis, design
and implementation phases of a development project:

1. solution-independent domain models (also called conceptual models),
2. platform-independent solution design models,
3. platform-specific implementation models.

A domain model may include both descriptions of the domain’s state structure (in conceptual infor-
mation models) and descriptions of its processes (in conceptual process models). They are solution-in-
dependent, or ‘computation-independent’, in the sense that they are not concerned with making any
system design choices or with other computational issues. Rather, they focus on the perspective and
language of the subject matter experts for the domain under consideration.

In the design phase, a platform-independent solution design model is developed on the basis of the
domain model, consisting of an information design model and a process design model. The same domain
model can potentially be used to produce a number of (even radically) different design models. Then,
one or more platform-specific implementation models can be derived from a design model. These one-
to-many relationships between conceptual models, design models and implementation models are il-
lustrated in Figure 1.1.

Figure 1.1: From a conceptual model via design models to implementation models.

1.2 Information Modeling with UML Class Diagrams

Conceptual information modeling is mainly concerned with describing the relevant entity types of a do-
main and the relationships between them, while information design modeling is concerned with describ-
ing the logical (platform-independent) data structures, typically in the form of classes of an Object-Ori-
ented (OO) modeling language like UML Class Diagrams, for designing and implementing a software or
simulation system.

UML allows defining special categories (called ‘stereotypes’) of modeling elements. For instance,
for distinguishing between object types and event types as two different categories of entity types we
can define corresponding stereotypes of UML classes («object type» and «event type») and use them for
categorizing classes in class models. This is shown in the model of Figure 1.2 below, which describes

Chapter 1: Introduction

Page 2 (of 25)

the event type Delivery and the object type Shop and a binary many-to-one association between
them assigning to each delivery event the shop that receives the delivery (we can say that the shop par-
ticipates in the delivery event).

Figure 1.2: Object and event types as two different categories of entity types.

1.3 Process Modeling with BPMN Process Diagrams

The Business Process Modeling Notation (BPMN) is an activity-based graphical modeling language for
defining business processes following the flow-chart metaphor. In 2011, the Object Management Group
has released version 2.0 of BPMN with an optional execution semantics based on Petri-net-style token
flows.

The most important elements of a BPMN process model are listed in Table 1.1.

Table 1.1: Basic elements of BPMN.

Name of
element Meaning Visual symbol(s)

Event

“Something that 'happens' during the course of a
process”, affecting the process flow. “There are
three types of Events, based on when they affect
the flow”: a Start Event is drawn as a circle with
a thin border line, while an Intermediate Event
has a double border line and an End Event has a
thick border line.

Start Inter-
mediate

End

Activity

“Work that is performed within a Business
Process”. A Task is an atomic Activity, while
a Sub-Process is a composite Activity. A Sub-
Process can be either in a collapsed or in an ex-
panded view.

Activity

Gateway

A Gateway is a node for branching or merging
control flows. A Gateway with an "X" symbol
denotes an Exclusive OR-Split for conditional
branching, if there are 2 or more output flows,
or an Exclusive OR-Join, if there are 2 or more
input flows. A Gateway with a plus symbol de-
notes an AND-Split for parallel branching, if
there are 2 or more output flows, or an AND-
Join, if there are 2 or more input flows. A Gate-
way can have both input and output flows.

Sequence
Flow

An arrow expressing the temporal order of
Events, Activities, and Gateways. A Conditional
Sequence Flow arrow starts with a diamond and
is annotated with a condition (in brackets).

condition

Chapter 1: Introduction

Page 3 (of 25)

Data Ob-
ject

Data Objects may be associated with Events or
Activities, providing a context for reading/writ-
ing data. A unidirectional dashed arrow de-
notes reading, while a bidirectional dashed ar-
row denotes reading/writing.

Event

data object

BPMN process diagrams can be used for making

1. conceptual process models (called “private non-executable” business process models), e.g., for docu-
menting existing business processes and for designing new business processes;

2. process automation models (called “private executable” business process models) for specific business
process automation platforms (that allow partially or fully automating a business process) by
adding platform-specific technical details in the form of model annotations that are not visible in
the diagram;

However, BPMN has several semantic issues and is not expressive enough for making platform-inde-
pendent computational process design models that can be used both for designing DES models and as a
general basis for generating code for specific process automation platforms.

Ontologically, BPMN activities (or, more precisely, activity types) are special event types. However,
the subsumption of activities under events is not supported by the standard semantics of BPMN. This
is one of the issues where BPMN needs to be improved for allowing a general process modeling seman-
tics.

The official BPMN execution semantics is not mandated by the BPMN specification, which states
that “implementations claiming Process Modeling Conformance are not expected to support the BPMN
execution semantics” (p.8). This implies that BPMN does not have a precise semantics, but rather two
semantics: a widely adopted informal semantics defined by Process Modeling Conformance, and a rarely
adopted formal one based on Petri-net-style token flows, which is limited to case handling processes
where each start event represents a new case and starts a new process for handling this case in isola-
tion from other cases. This semantics disallows, for instance, to model processes where several cases
are handled in parallel and interact in some way, e.g., by competing for resources. Consequently, this
semantics is inadequate for capturing the overall process of a business system with many actors per-
forming tasks related to many cases with various interdependencies, in parallel.

While BPMN does not refer to the fundamental concept of object types and utilizes XML Schema for
defining data types and XPath for defining expressions, DPMN utilizes UML Class Diagrams for defining
(data, object and event) types and OCL for defining expressions.

1.4 DPMN and Event Graphs

DPMN diagrams can be viewed as a generalization of the Event Graph diagrams of (Schruben 1983),
which allow defining computationally complete process models for DES. In these diagrams, circles rep-
resent event types, which may be annotated with (possibly conditional) variable assignments repre-
senting state changes, and may have (possibly conditional) event scheduling arrows going to another
event type circle and possibly annotated with a delay time expression. A simple Event Graph example,
is expressed with BPMN in Figure 1.3 below.

Arrival
{Q++}

ServiceStart ServiceEnd
{Q--}

Q > 0

Q = 1 serviceTime()

Figure 1.3: An event graph expressed as a BPMN process diagram.

Chapter 1: Introduction

Page 4 (of 25)

In the Event Graph shown in Figure 1.3, when an Arrival event occurs, the state variable Q (repre-
senting the queue length) is incremented by 1, as defined by the state change statement Q++. In ad-
dition, if the state condition Q=1 holds, an immediate follow-up event of type ServiceStart is sched-
uled. The unconditional event scheduling arrow between ServiceStart and ServiceEnd means that any
ServiceStart event schedules a ServiceEnd event (with a delay corresponding to the service duration).
Finally, a ServiceEnd event causes (a) the state change that Q is decremented by 1, and (b), if Q > 0, that
an immediate follow-up event of type ServiceStart is scheduled.

Like Event Graphs, DPMN diagrams have a precise formal semantics, such that they are computa-
tionally complete platform-independent design models that can be used as a basis for coding a plat-
form-specific DES model with a DES technology. DPMN generalizes Event Graphs by allowing more ex-
pressive (e.g., object-oriented) concepts of system state and state change, and by supporting activities
in addition to events.

1.5 DPMN Elements

The main elements of DPMN are the following diagram node types:

1. the three control flow node types:

1. Event types (circles),
2. Activity types (rounded-corner rectangles), and
3. Gateway types (diamonds),

2. Data Objects (rectangles),
3. Text Annotations (left brackets that are attached, via dashed connection lines, to control flow node

types, Data Objects or Sequence Flows),

and the following diagram arc types:

1. Sequence Flows (solid arrows) between control flow node types,
2. Data Object attachments (dashed arrows) between Event/Activity types and Data Objects.

DPMN adopts and adapts the syntax and semantics of BPMN in the following way:

1. A DPMN diagram has an underlying UML class diagram defining its (object and event) types.
2. DPMN Sequence Flow arrows pointing to an event circle denote event scheduling control flows

(adopted from Event Graphs). They must be annotated by event attribute assignments and an oc-
currence time assignment for creating/scheduling a new event.

3. DPMN has three special forms of Text Annotation:

1. Text Annotations attached to Event circles for declaring event rule variables,
2. Text Annotations attached to Sequence Flow arrows for state change statements,
3. Text Annotations attached to Sequence Flow arrows pointing to Event circles for event attribute

assignments.

4. DPMN has an extended form of Data Object visually rendered as rectangles with two compart-
ments:

1. a first compartment showing an object variable name and an object type name separated by a
colon, together with a binding of the object variable to a specfic object;

2. a second compartment containing a block of state change statements (such as attribute value
assignments).

5. BPMN's temporal semantics and visual syntax distinction between Start, Intermediate and End
Events is dropped. A DPMN Event circle implicitly represents a start (or end) Event when it has no
incoming (or outgoing) Sequence Flow arrows. It represents an intermediate Event if it has both in-
coming and outgoing Sequence Flow arrows.

6. In a DPMN event rule design diagram, there is exactly one start Event circle followed by zero or more
end Event circles, but there is no intermediate Event circle.

7. A DPMN process design diagram consists of an integrated set of event rule design diagrams such that
its intermediate Event circles are semantically overloaded: in the context of an incoming Sequence
Flow arrow they denote a scheduled event to be added to the Future Events List (FEL), while in the
context of an outgoing Sequence Flow arrow or an attached Data Object, they denote an event oc-

Chapter 1: Introduction

Page 5 (of 25)

currence that causes state changes and follow-up events. The scheduled event and the resulting
event occurrence could be separated by drawing two event circles that are connected by a Sequence
Flow arrow denoting a wait-for control flow. Such a pair of event circles corresponds to a pair of
sequential BPMN Events where the first one is a throwing and the second one is a catching inter-
mediate event.

8. The token flow semantics of BPMN is replaced by the operational semantics of event rules defined
in (Wagner, 2017a).

An Event circle corresponds to an event type of the underlying information design model and may trig-
ger both state changes, as specified in Data Object rectangles attached to the Event circle, and follow-
up events, as specified by (possibly conditional) event scheduling Sequence Flow arrows.

2 Examples

2.1 Example 1: An Event-Based Inventory Management Model

We consider a simple case of inventory management: a shop selling one product type (e.g., one model
of TVs), only, such that its in-house inventory only consists of items of that type. On each business day,
customers come to the shop and place their orders. If the ordered product quantity is in stock, the cus-
tomer pays her order and the ordered products are handed out to her. Otherwise, the order may still be
partially fulfilled, if there are still some items in stock, else the customer has to leave the shop without
any item.

When the stock quantity falls below the reorder point, a replenishment order is sent to the vendor
for restocking the inventory, and the ordered quantity is delivered 1-3 days later.

2.1.1 Information Model

We can extract the following candidates for object types from the problem description by identifying
and analyzing the domain-specific noun phrases: shops (for being more precise, we also say single prod-
uct shops), products (or items), inventories, customers, customer orders, replenishment orders, and ven-
dors. Since noun phrases may also denote events (or event types), we need to take another look at our
list and drop those noun phrases. We recognize that customer orders and replenishment orders denote
messages or communication events, and not ordinary objects. This leaves us with the five object types
described in the diagram shown in Figure 2.1.

Figure 2.1: A first version conceptual information model, describing object types, only.

Notice that the model also includes associations between object types. The association
shops–have–products is one-to-one because we assume that shops only sell a single product, while the
association shops–have–inventories is one-to-one because we assume that shops only have one inven-
tory for their single product.

In the next step, event types are added, together with their participation associations with involved
object types. They can be identified, e.g., by considering the verb phrases in the problem description,
such as “pay order”, “hand out product”, and “deliver”. In the model shown in Figure 2.2, for forming
names for event types, these verb phrases are nominalized.

Notice that a participation association between an object type and an event type is typically one-to-
many, since an event of that type has typically exactly one participating object of that type, and, vice
versa, an object of that type typically participates in many events of that type.

Chapter 2: Examples

Page 6 (of 25)

name

single product shops
customers

quantity

«event type»
customer orders

quantity

«event type»
replenishment orders

amount

«event type»
payments

name

vendors

1
*

1

*

1

*

1

*

1
*

1

*

quantity

«event type»
deliveries

1 *quantity

«event type»
product handovers

1 *

amount

«event type»
customer payments

1

*

*

name

product types

1
1

stock quantity
reorder point
target inventory

inventories
1

1

«event type»
customer arrivals

«event type»
customer departures

*

*

*

*

Figure 2.2: The complete conceptual information model.

We now derive an information design model from the solution-independent conceptual informa-
tion model shown in Figure 2.2. A design model is solution-specific because it is a computational de-
sign for a specific research question. In the example under consideration, we deal with the following
specific research question: compute the average percentage of lost sales (if an order quantity is greater
than the current stock level, the difference counts as a lost sale). A design model is platform-indepen-
dent in the sense that it does not use any modeling element that is specific for a particular platform,
such as a Java datatype.

In the solution design model, the goal is to keep only those entity types in the model, which are
needed for being able to answer the research question(s).In the design model, we follow a widely used
naming convention: the name of a class is a capitalized singular noun phrase in mixed case.

For simplicity, we add a lostSales attribute to the SingleProductShop class for storing the lost-sales
statistics for each shop. Alternatively, we could add a special class for defining statistics variables.

Since for computing the percentage of lost sales, we don’t need the order quantities of individual
orders, but only the total number of ordered items, it’s sufficient to model an aggregate of customer or-
ders like, for instance, the daily demand. Consequently, we don’t need to consider individual customers
and their orders. We can also drop all object types except SingleProductShop and all event types except
DailyDemand and Delivery.

Thus, the simplifications of design modeling lead to a model as shown in Figure 2.3.

receiver1*

name : NonEmptyString
stockQuantity : NonNegativeInteger
reorderPoint : PositiveInteger
targetInventory : PositiveInteger
lostSales : Percentage

SingleProductShop

recurrence() : PositiveInteger = 1
createNextEvent() : DailyDemand
«rv» demandQuantity() : Integer = U(5,10)

quantity : PositiveInteger

«exogenous event type»
DailyDemand

shop 1*

«rv» leadTime() : Integer = Emp({1:0.2, 2:0.5, 3:0.3})

quantity : PositiveInteger

«caused event type»
Delivery

Figure 2.3: The information design model with random variables.

Notice that we distinguish between two kinds of event types: exogenous event types and caused
event types, and that the two associations model the participation of the shop both in DailyDemand
events and in Delivery events, and the association end names shop and receiver represent the reference
properties DailyDemand::shop and Delivery::receiver (as implied by the corresponding association end
ownership dots). These reference properties allow to access the properties and invoke the methods of
a shop from an event, which is essential for the event routine of each event type. Thus, the ontological
pattern of objects participating in events and the implied software pattern of object reference properties

Chapter 2: Examples

Page 7 (of 25)

in event types are the basis for defining event routines (and rules) in event types.
While exogenous events of a certain type occur again and again with some (typically random) recur-

rence, caused events occur at times that result from the internal causation dynamics of the simulation
model. So, for any event type adopted from the conceptual model, we choose one of these two cate-
gories. For any exogenous event type, we add a recurrence operation, which is responsible for comput-
ing the time until the next event occurs, and a createNextEvent operation, which is invoked for creating
a new instance of the event type as its next occurrence.

2.1.2 Process Model

We make a conceptual process model and a process design model for the inventory management sys-
tem. These models can be expressed visually in the form of BPMN and DPMN process diagrams and
textually in the form of event rule tables.

A conceptual process model should include the event types identified in the conceptual information
model, and describe in which temporal sequences events may occur, based on conditional and parallel
branching. We can do this by describing, for each of the event types from the conceptual information
model, the causal regularity associated with it in the form of an event rule that defines the state
changes and follow-up events caused by events of that type.

The purpose of a conceptual process model for simulation is to identify causal regularities and ex-
press them in the form of event rules, one for each relevant type of events, at a conceptual level. We can
describe event rules textually and visually in an event rule table like Table 2.1.

Table 2.1: Conceptual event rule models.

ON (event
type) DO (event routine) Conceptual Event Rule Diagram

customer or-
der

check inventory;
if there is sufficient inventory, then
product handover, else customer depar-
ture customer

order

sufficient inventory?

product
handover

customer departure

inventory

check

product han-
dover

decrement (get product from) inventory;
customer payment

product
handover

customer
payment

inventory

decrement

customer pay-
ment

customer departure
[Notice that we do not describe the increase of the
shop's cash balance due to the payment, because
we focus on inventory.] customer

payment
customer
departure

Chapter 2: Examples

Page 8 (of 25)

replenishment
order delivery

replenishment
order

delivery

delivery increment inventory;
payment

delivery payment

inventory

increment

We can integrate these conceptual event rule models in a conceptual process model, as shown in
Figure 2.4.

customer
order

sufficient inventory?

customer departure

inventory

product
handover

customer
payment

replenishment
order

delivery payment

check

decrementincrement

Figure 2.4: The conceptual process model integrating all event rule models.

Notice that the BPMN End Event circles used in the event rule models may have to be converted to
BPMN Intermediate Event circles in the integrated model.

A process design model needs to provide a computationally complete specification of event rules,
one for each event type defined in the information design model. An event rule for a given event type
essentially defines a set of (possibly conditional) state changes and a set of (possibly conditional) fol-
low-up events triggered by an event of that type. We show below how a computational form of event
rules can be visually expressed in DPMN diagrams.

Since our information design model (tailored to the given research question of computing the lost
sales statistics) only includes two event types, DailyDemand and Delivery, we need to model the two
corresponding event rules, only, as in the event rule design Table 2.2, where these rules are modeled
textually using pseudo-code.

Table 2.2: Event rule design with pseudo-code.

ON (event expr.) DO (event routine)

Chapter 2: Examples

Page 9 (of 25)

DailyDemand(sh, demQ) @ t

• sh:SingleProductShop references the shop where
the DailyDemand event happens

• demQ is the daily demand quantity

var sQ := sh.stockQuantity
var newSQ := sQ - demQ
var rP := sh.reorderPoint
sh.stockQuantity := max(0, newSQ)
if sQ > rP & newSQ <= rP then
if newSQ < 0 then

sh.lostSales += demQ - sQ
newSQ := 0

var delQ := sh.targetInventory − newSQ
schedule Delivery(sh, delQ) @ t + leadTime()

Delivery(rec, delQ) @ t

• rec:SingleProductShop references the shop that is
the receiver of the delivery

• delQ is the delivered quantity

rec.stockQuantity += delQ

Notice the general structure of an event expression like DailyDemand(sh, demQ) @ t: it starts
with the name of an event type (here: DailyDemand) followed by a comma-separated list of event para-
meter names (here, sh and demQ), corresponding to event attributes, and an occurrence time annota-
tion @ t. The event expression is complemented with a parameter legend (here, sh: SingleProd-
uctShop) defining the type of each event parameter.

We can also express these two rules in DPMN event rule design diagrams, as shown in Figure 2.5
and Figure 2.6.

dd: DailyDemand

sh: SingleProductShop
[sh = dd.shop]

sh.stockQuantity := max(0, newSQ);

if (newSQ < 0) sh.lostSales += |newSQ|

d: Delivery

var sQ := sh.stockQuantity
var newSQ := sQ − dd.quantity
var rp := sh.reorderPoint

quantity := sh.targetInventory − max(0, newSQ);
receiver := sh;

+Delivery.leadTime()

[sQ > rP & newSQ <= rP]

Figure 2.5: A DPMN event rule design model for the event type DailyDemand.

In general, a DPMN event rule design diagram contains event circles with two-part names (like dd:
DailyDemand) specifying an event variable (like dd) and an event type (like DailyDemand). Event circles
may be associated with one or more data object rectangles (like sh: SingleProductShop). There is exact-
ly one start event circle without incoming arrows, which may contain rule variable declarations in an
attached text annotation. The data object rectangles contain state change statements using the event
variable and possibly the rule variable(s).

An event circle may have one or more outgoing arrows leading to gateways or to event circles. The
incoming arrows to an event circle represent event scheduling control flows. They must be annotated
with event attribute assignments (like quantity and receiver in Figure 2.5) and an assignment of the
scheduled event's occurrence time, which is provided in the form of a delay expression prefixed with
"+". E.g, the annotation +Delivery.leadTime() in Figure 2.5 means that the scheduled Delivery event will
occur with a delay provided by invoking the Delivery.leadTime() function.

Chapter 2: Examples

Page 10 (of 25)

rec: SingleProductShop
[rec = d.receiver]

rec.stockQuantity += d.quantity

d: Delivery

Figure 2.6: A rule design model for the event type Delivery.

Notice that Delivery events trigger a state change, but no follow-up events.
These two event rule design models can be merged into a process design model shown in Figure 2.7.

rec: SingleProductShop
[rec = d.receiver]

rec.stockQuantity += d.quantity

dd: DailyDemand

sh: SingleProductShop
[sh = dd.shop]

sh.stockQuantity := max(0, newSQ);

if (newSQ < 0) sh.lostSales += |newSQ|

d: Delivery

var sQ := sh.stockQuantity
var newSQ := sQ − dd.quantity
var rp := sh.reorderPoint

quantity := sh.targetInventory − max(0, newSQ);
receiver := sh;

+Delivery.leadTime()

[sQ > rP & newSQ <= rP]

Figure 2.7: A process design model in the form of a DPMN diagram.

2.2 Example 2: An Event-Based Service Desk Model

In a basic service system example, customers arrive at random times at a service desk where they have
to wait in a queue when the service desk is busy. Otherwise, when the queue is empty and the service
desk is not busy, they are immediately served by the service clerk. Whenever a service is completed, the
next customer from the queue, if there is any, is invited for the service and moves forward to the desk.

2.2.1 Information Model

It is straight-forward to extract four object types and six event types from the problem description
above, resulting in the conceptual information model shown in Figure 2.8.

Chapter 2: Examples

Page 11 (of 25)

http://sim4edu.com/sims/2

«object type»
service desks

«object type»
service queues

«object type»
sevice clerks

«object type»
customers

0..1*

1 1 1 1

«event type»
customer arrivals

*

«event type»
customer departures

*

1

*

*

«event type»
service start

*

1

*

«event type»
service end

*

*

«event type»
queuing up

«event type»
inviting for service

1

*

1

*

*

*

«object type»
people

Figure 2.8: A conceptual information model.

The associations between event types and object types represent participation relationships. For in-
stance, in the model of Figure 2.8, we express that a customer arrival event has exactly one customer
and one service desk as its participants. For completing the conceptual information model, we may add
attributes for describing objects and events of these types.

The model of Figure 2.8 implicitly contains an activity type composed of the two event types “ser-
vice start” and “service end”. It is well-known that, conceptually, an activity is a composite event that is
temporally framed by a pair of start and end events. When making an information model for a form of
DES with activities, we can replace such pairs of start and end event types with corresponding activity
types. For instance, in Figure 2.8, we could replace the two event types “service start” and “service end”
with the activity type “service performances”.

We now derive a solution-specific, but platform-independent information design model from the
solution-independent conceptual information model shown in Figure 2.8. A design model is solution-
specific because it is a computational solution design for answering one or more research questions,
allowing to abstract away from those object and event types that are not relevant for the solution de-
sign.

We consider the following specific research question: compute the Mean Response Time, which is
the average length of time a customer spends in the system from arrival to departure. This research
question allows abstracting away from all object types of the conceptual model except “service desks”
and “customers”, and from all event types except “customer arrivals” and “customer departures”. How-
ever, for getting a uniform series of models, we also include “service start” and “service end” events.

In an information design model we distinguish between two kinds of event types: exogenous event
types and caused event types. While exogenous events of a certain type occur again and again, typically
with some random recurrence that can be modeled with a probability distribution, caused events occur
at times that result from the internal causation dynamics of the simulation model.

In our example model, shown in Figure 2.9, we define CustomerArrival as an exogenous event
type with a recurrence function that implements a random variable based on the exponential dis-
tribution with event rate 0.5, symbolically expressed as Exp(0.5). Notice that all event types have a
functional association with the object type ServiceDesk, which will be implemented in the form of a
serviceDesk reference property.

Chapter 2: Examples

Page 12 (of 25)

«rv» serviceDuration() : Decimal {Exp(0.5)}

«object type»
ServiceDesk

arrivalTime : Decimal

«object type»
Customer

0..1

waitingCustomers

*
{ordered}

«rv» recurrence() : Decimal {Exp(0.5)}

«exogenous event type»
CustomerArrival

1

*

«event type»
CustomerDeparture

1

*

*

«event type»
ServiceStart

«event type»
ServiceEnd

*

*

Figure 2.9: An information design model for the service desk system.

Notice that we have modeled the random duration of a service with the help of the random variable
operation serviceDuration() shown in the third compartment of the ServiceDesk class. It must
be implemented by a method that samples the exponential distribution function Exp(0.5).

The information design model shown in Figure 2.9 supports simulation scenarios with one or more
service desks, each having its own waitingCustomers queue and its own events, operating in parallel.
For chained service desks scenarios, an optional successor property would have to be added to the Ser-
viceDesk object type. Chained service desks will be discussed in Example 4.

2.2.2 Process Model

The most basic form of a process model consists of a set of event rule models, expressed textually in
the form of event rule statements, or visually in the form of event rule diagrams, preferably collected in
an event rule table. Alternatively, a process model may be obtained by integrating all event rule diagrams
within a consolidated process diagram.

Conceptual process models can be expressed visually in the form of BPMN process diagrams or tex-
tually in the form of English event rule statements.

For simplicity, we consider the customer that is currently being served to be part of the queue. In
this way, in the simulation program, we can check if the service desk is busy by testing if the length of
the queue is greater than 0.

Table 2.3: Conceptual event rule models for the service system example.

ON
(event
type)

DO (event routine) Conceptual Event Rule Diagram

customer
arrival

the queue (length) is incremented;
if there is no one else in the queue (queue
length = 1), the service for the newly ar-
rived customer starts

customer
arrival

service start

queue

increment

[queue length = 1]

Chapter 2: Examples

Page 13 (of 25)

service
start service end

service
end customer departure

service end customer
departure

customer
departure

the queue (length) is decremented; if
there is still someone in the queue (queue
length > 0), the next service starts

queue

customer
departure

service start

decrement

[queue length > 0]

The individual event rule diagrams shown in Table 2.1 can be integrated with each other as shown
in Figure 22 where we have to express the event types “service start”, “service end” and “customer de-
parture” in the form of BPMN’s intermediate events for complying with the BPMN syntax.

service start service end

customer arrival

queue

customer
departure

increment decrement

[queue length > 0]

[queue length = 1]

Figure 2.10: A conceptual process model integrating the event rule diagrams of Table
2.1.

If we would make a process model for a form of basic DES extended with activities, as in the next
example, we would replace the two event types “service start” and “service end” with the activity type
“service performance” resulting in the model depicted below in Figure 2.11.

Chapter 2: Examples

Page 14 (of 25)

customer arrival

queue

customer
departure

service
performance

[queue length > 0]

increment decrement

[queue length = 1]

Figure 2.11: A model with an activity replacing a start/end event pair.

Process design models can be visually expressed in the form of DPMN process diagrams and textu-
ally in the form of event rule pseudo code.

In the process design model, we include one event rule for each of the event types of the informa-
tion design model in Figure 2.9. Notice that the event scheduling time expression @t', e.g., in the Cus-
tomerArrival and ServiceEnd rules, denotes scheduling at the next moment in time, which is either t+1,
if time is discrete, or, otherwise, t+ε where ε is the smallest time point distance depending on the time
granularity of the model.

Table 2.4: An event rule design table for Example 2.

ON (event expr.) DO (event routine)

CustomerArrival(sd) @ t
with sd:Servicedesk

sd.waitingCustomers.push(c)
if sd.waitingCustomers.length = 1 then
schedule ServiceStart(sd) @ t'

ServiceStart(sd) @ t
with sd:Servicedesk

schedule ServiceEnd(sd) @
(t + ServiceDesk.serviceDuration())

ServiceEnd(sd) @ t
with sd:Servicedesk

schedule CustomerDeparture(sd) @ t'

CustomerDeparture(sd) @ t

with sd:Servicedesk

sd.waitingCustomers.pop()
if sd.waitingCustomers.length > 0 then
schedule ServiceStart(sd) @ t'

These event rule design models can be merged into a process design model:

sd: ServiceDesk
[sd = ca.serviceDesk]

PUSH ca.customer TO
sd.waitingCustomers

ca:Customer
Arrival

sd: ServiceDesk
[sd = cd.serviceDesk]

POP FROM
sd.waitingCustomers

cd:Customer
Departure

Service
Start

ServiceEnd

+ServiceDesk.
serviceDuration()

[sd.waitingCustomers.
length > 0]

[sd.waitingCustomers.
length = 1]

Figure 2.12: A DPMN process design model.

The operators PUSH and POP in the sd.ServiceDesk data object rectangles refer to the standard
queue operations push and pop. Generally, in DPMN, state change statements are expressed in a lan-
guage that depends on the state structure of the modeled system. Typically, this will be an object-ori-

Chapter 2: Examples

Page 15 (of 25)

ented system state structure where basic state changes consist of attribute value changes as well as
link creations and destructions. If an attribute has a complex data value, such as a set or an array list,
a state change statement can be expressed in terms of the operations provided by the complex (collec-
tion) datatype.

2.3 Example 3: An Activity-Based Service Desk Model

2.3.1 Information Model

We again consider the service desk system, as described in the section about Example 2. But now we
model the service performed at the service desk as an activity.

Conceptually, an activity is a composite event that is temporally framed by a pair of start and end
events. Consequently, whenever a model contains a pair of related start and end event types, like ser-
vice start and service end in the model of Figure 2.8, they can be replaced with a corresponding activity
type, like service performances, as shown in Figure 2.13.

«object type»
service desks

«object type»
service queues

«object type»
sevice clerks

«object type»
customers

0..1*

1 1 1 1

«event type»
customer arrivals

*

«event type»
customer departures

*

1

*

*

«activity type»
service performances

*

1

*

«event type»
queuing up

«event type»
inviting for service

1

*

1

*

*

*

«object type»
people

Figure 2.13: A conceptual information model with an activity type.

As in Example 2, in the design model we only need the object types ServiceDesk and Customer. But
instead of the pair of related start/end event types ServiceStart and ServiceEnd, we now have the activity
type ServicePerformance.

Chapter 2: Examples

Page 16 (of 25)

«rv» serviceDuration() : Decimal {Exp(0.5)}

«activity type»
ServicePerformance

«object type»
ServiceDesk

arrivalTime : Decimal

«object type»
Customer

0..1

waitingCustomers

*
{ordered}

«rv» recurrence() : Decimal {Exp(0.5)}

«exogenous event type»
CustomerArrival

1

*

«event type»
CustomerDeparture

1

*

*

*

Figure 2.14: An information design model for Example 3.

Notice that we have moved the random variate sampling method serviceDuration() from ServiceDesk
to ServicePerformance, as shown in Figure 2.14, since this is the most natural context class for it.

This model only supports scenarios with either just one service desk or multiple service desks op-
erating in parallel. For chained service desks scenarios, an optional next property, defining a successor
association, can be added to the ServiceDesk object type, as shown in the following diagram.

«object type»
ServiceDesk

*

next

0..1

The successor association defines a network of service desks. The resulting service network model
is discussed in the section on Example 4.

2.3.2 Process Model

Table 2.5: Conceptual event rule models for Example 3.

ON (event
type) DO (event routine) Conceptual Event Rule Diagram

customer
arrival

the queue (length) is incre-
mented;
if there is no one else in the
queue (queue length = 1), the
service for the newly arrived
customer starts

customer arrival

queue

service
performance

increment

[queue length = 1]

Chapter 2: Examples

Page 17 (of 25)

service per-
formance customer departure

customer
departure

service
performance

customer
departure

the queue (length) is decre-
mented; if there is still some-
one in the queue (queue
length > 0), the next service
starts queue

customer
departure

service
performance

decrement

[queue length > 0]

The conceptual event rule models shown in Table 2.5 are integrated with each other in the diagram
shown in Figure 2.11.

An activity is scheduled by providing both its start time t and its duration Δ in the form of an ordered
pair [t, Δ]. In the following table, when the start time is specified with the expression t' refering to
a given time instant t, this represents the next moment in time, which means the activity starts imme-
diately.

Table 2.6: The event rule design table for Example 3.

ON (event expr.) DO (event routine)

CustomerArrival(sd) @ t
with sd:Servicedesk

increment sd.queueLength
if sd.queueLength = 1 then
schedule ServicePerformance(sd) @
[t', ServicePerformance.serviceDuration()]

ServicePerformance(sd) @ t

with sd:Servicedesk
schedule CustomerDeparture(sd) @ t'

CustomerDeparture(sd) @ t

with sd:Servicedesk

decrement sd.queueLength
if sd.queueLength > 0 then
schedule ServicePerformance(sd) @
[t', ServicePerformance.serviceDuration()]

Notice that activities are composite events with duration. Scheduling an activity means scheduling
its start event. An activity completes with the occurence of its end event. Conseqeuntly, an activity oc-
curs at the same time as its end event.

The three event rule design models described in the above table can be merged into a process design
model:

Chapter 2: Examples

Page 18 (of 25)

sd: ServiceDesk
[sd = ca.serviceDesk]

PUSH ca.customer TO
sd.waitingCustomers

ca:Customer
Arrival

sd: ServiceDesk
[sd = cd.serviceDesk]

POP FROM
sd.waitingCustomers

Service
Performance

cd:Customer
Departure

[sd.waitingCustomers.
length > 0]

+ServicePerformance.
serviceDuration()

[sd.waitingCustomers.
length = 1]

+ServicePerformance.
serviceDuration()

Figure 2.15: A DPMN process design model for Example 3.

In a DPMN diagram, an activity scheduling time expression of the form [t', Δ], where t' means
starting the activity without delay, is simplified to the expression +Δ.

2.4 Example 4: An Activity-Based Service Network Model

When chaining service desks, we have to distinguish between start/end nodes and intermediate nodes.
For simplicity, we do not model the arrivals and departures at, resp. from, intermediate nodes as ex-
plicit events. Rather we leave these events implicit by merging them with the corresponding service
start/end events. Thus, in a service network model, a customer arrival event represents an arrival at a
start node of the network, and a customer departure event represents a departure at an end node of the
network.

A simple example of a service network is a chain of two service desks as in a Department of Motor
Vehicles (DMV) where clients first have to queue up at the reception desk for their request being record-
ed and then have to wait for a clerk who will handle their case. This scenario consists of two parallel
chains:

1. a sequence of two spatial objects: a reception desk followed by a case handling desk;
2. a sequence of two activity types: a reception activity type associated with the reception desk and a

case handling activity type associated with the case handling desk such that the end of a reception
activity may schedule the start of a follow-up case handling activity.

The service desk objects are involved in the “flow” of customers through the network, which is accom-
panied by a parallel activity control flow. The combination of these two parallel flows is characteristic
for the general concept of processing networks: (1) a flow of work objects (like customers, documents or
manufacturing materials) from one node object (like a service desk, office desk or machine) to the next
one and a parallel activity control flow. Such a network can be modeled either with specific (object and
activity) types like ReceptionDesk, CaseHandlingDesk, Reception and CaseHandling, as shown in Section
2.4.1, or with generic types like ServiceDesk and ServicePerformance, as shown in Section 2.4.2.

A specific model for a service network is more complex than the generic model, simply because it
defines more object types and activity types. This complexity is only justified if the model needs to de-
scribe different service desk types and related activity types, each with different features (properties,
operations and constraints).

2.4.1 A Specific Model

A specific information design model for a service desk chain consisting of a reception desk and a case
handling desk is shown in the following diagram:

Chapter 2: Examples

Page 19 (of 25)

«rv» duration() : Decimal {Exp(0.5)}

«activity type»
Reception

«object type»
ReceptionDesk

arrivalTime : Decimal

«object type»
Customer

0..1

waitingCustomers *
{ordered}

«rv» recurrence() : Decimal {Exp(0.5)}

«exogenous event type»
CustomerArrival

1

*

«event type»
CustomerDeparture

1

*

1*

1

*

«object type»
CaseHandlingDesk

1

next

1

«rv» duration() : Decimal {Exp(0.5)}

«activity type»
CaseHandling

0..1

waitingCustomers

*
{ordered}

1

*

Figure 2.16: A specific information design model for the DMV service desk chain.

The next property of ReceptionDesk defines a successor relationship that allows ReceptionDesk ob-
jects to access the waitingCustomers queue of their successor service desks.

Using this model, the initial state of a simulation scenario can be coded by creating a CaseHan-
dlingDesk instance and a ReceptionDesk instance that references the CaseHandlingDesk instance in its
next property:
CaseHandlingDesk{ id: 2};
ReceptionDesk{ id: 1, next: 2};

rd: ReceptionDesk
[rd = ca.serviceDesk]

PUSH ca.customer TO
rd.waitingCustomers

ca:Customer
Arrival

rd: ReceptionDesk
[sd = rec.serviceDesk]

PUSH rd.waitingCustomers.pop()
TO rd.next.waitingCustomers

rec: Reception ch: CaseHandling

chd: CaseHandlingDesk
[chd = ch.serviceDesk]

POP FROM chd.waitingCustomers

cd:Customer
Departure

[rd.waiting-
Customers.
length > 0]

+Reception.
serviceDuration()

[chd.waiting-
Customers.
length > 0]

+CaseHandling.
serviceDuration()

[rd.waiting-
Customers.
length = 1]

[chd.waiting-
Customers.
length = 1]

Figure 2.17: A specific process design model for the DMV service desk chain.

2.4.2 A Generic Model

A generic information design model for a service network is shown in the following diagram:

Chapter 2: Examples

Page 20 (of 25)

«rv» serviceDuration() : Decimal {Exp(0.5)}

«activity type»
ServicePerformance

«object type»
ServiceDesk

arrivalTime : Decimal

«object type»
Customer

0..1

waitingCustomers

*
{ordered}

«rv» recurrence() : Decimal {Exp(0.5)}

«exogenous event type»
CustomerArrival

1

*

«event type»
CustomerDeparture

1

*

*

*

*

next

0..1

Figure 2.18: An information design model for service networks.

The optional next property of service desks defines a successor relationship. Whenever the next
property of a service desk has no value, this means that the service desk has no successor, so the cus-
tomer must depart.

Using this generic model, the initial state of a simulation scenario can be coded by creating two Ser-
viceDesk instances with names receptionDesk and caseHandlingDesk, such that the receptionDesk object
references the caseHandlingDesk object in its next property:
ServiceDesk{ id: 2, name:"caseHandlingDesk"};
ServiceDesk{ id: 1, name:"receptionDesk", next: 2}

Table 2.7: Conceptual event rule models for a generic service network model.

ON (event
type) DO (event routine) Conceptual Event Rule Diagram

customer
arrival

the queue (length) is in-
cremented;
if there is no one else in
the queue (queue length =
1), the service for the
newly arrived customer
starts

customer arrival

queue

service
performance

increment

[queue length = 1]

Chapter 2: Examples

Page 21 (of 25)

service per-
formance

the queue (length) is
decremented; check si-
multaneously if the ser-
vice desk has a successor
and if there is still some-
one in the queue; if the
service desk has a succes-
sor, then the next service
performance at the suc-
cessor desk starts, if its
queue is empty; other-
wise, if the service desk
does not have a successor,
the customer departs; if
there is still any customer
in the queue, then start
the service for the next
customer

customer
departure

service
performance

Does the service desk
have a successor?

Is there any other
customer waiting?

queue

Is its queue
empty?

decrement

Based on these conceptual event rule models, we can make a process design model:

sd: ServiceDesk
[sd = ca.serviceDesk]

PUSH ca.customer TO
sd.waitingCustomers

ca:Customer
Arrival

sd: ServiceDesk
[sd = sp.serviceDesk]

POP c FROM sd.waitingCustomers;
IF (sd.next) PUSH c TO sd.next.

waitingCustomers

sp: ServicePerformance

Customer
Departure

[sd.waiting-
Customers.
length > 0]

+ServicePerformance.
serviceDuration()

[NOT sd.next]

[sd.waiting-
Customers.
length = 1]

Figure 2.19: A generic process design model for service networks.

Notice that the condition (sd.next), using the syntax of JavaScript, tests if the object referenced
by the variable sd has a value for the next property.

2.5 Example 5: Modeling a Network of Processing Nodes

In addition to the fundamental DES modeling concepts of objects, events and activities, the OEM&S
paradigm also supports the concept of Processing Network (PN) models, which generalize the operations
research concept of “queueing networks”.

In a PN model, describing a network of entry nodes, processing nodes and exit nodes, work objects
(representing, e.g., customers or raw materials) enter a system via arrival events at an entrance object
and then flow through one or more processor objects (representing, e.g., sevice desks or manufacturing
machines) where they are subject to processing activities before they leave the system at an exit object
via a departure event.

DPMN adopts the OEM concepts for PN modeling, which are based on the fundamental DES model-
ing concepts of objects, events and activities. In OEM, a PN model can be converted into a semantically
equivalent DES model consisting of object types, event types and activity types, which in turn can be
converted to a basic DES model consisting of object and event types, only. The nodes of a PN model
represent modeling elements that are overloaded with two meanings. Entry, resp. exit, nodes combine
a (possibly spatial) node object, representing entrances resp. exits, and an associated implicit (arrival,

Chapter 2: Examples

Page 22 (of 25)

resp. departure) event type. Processing nodes combine a (possibly spatial) processor object, represent-
ing, e.g., a service desk or a machine, and an associated implicit processing activity type. This semantic
overloading makes PN models more concise and easier to read and understand.

Due to its intuitive building blocks and its applicability to problems in the manufacturing and ser-
vice industries, PN modeling is the most widely used DES modeling paradigm. It is supported by many
simulation tools, such as Arena, ExtendSim, Simul8, Simio and AnyLogic, each of them using their own
proprietary terminology and diagram language for the same concepts.

Figure 2.20: A service desk modeled as an Arena Process.

The OEM concepts for PN modeling adopted by DPMN provide a vendor-neutral conceptual frame-
work for analyzing and comparing the proprietary PN modeling languages of these commercial tools.
The following table allows comparing the different terms used for core concepts:

OEM Arena Simul8 Simio AnyLogic

Work Object Entity Work Item Token Agent

Entry Node Create Start Point Source Source

Processing Node Process Queue + Activity Server Service

Exit Node Dispose End Point Sink Sink

2.5.1 Information Model

As shown in the information design model shown in Figure 2.16, the three kinds of PN nodes are mod-
eled as follows:

1. An entry node consists of a CustomerEntrance object and an associated CustomerArrival event type,
which is also associated with a Customer object type, stating that a customer arrival event has two
participants: a customer and a customer entrance. A CustomerEntrance object has an attribute for
the statistics number of arrived customers.

2. A processing node consists of a ServiceDesk object with a waitingCustomers queue, and an associated
ServicePerformance activity type. Every ServiceDesk object is either connected to a next service desk
or to an exit node.

3. An exit node consists of a CustomerExit object and an associated CustomerDeparture event type. A
CustomerExit object has two attributes for the statistics number of departed customers and cumula-
tive time in system.

Chapter 2: Examples

Page 23 (of 25)

1

*

ServiceDesk

«rv» recurrence() : Decimal {Exp(0.5)}

«exogenous event type»
CustomerArrival

«rv» serviceDuration() : Decimal {Exp(0.5)}

«activity type»
ServicePerformance

1

*

«event type»
CustomerDeparture

1

*

nmrOfArrCust : Integer

CustomerEntrance
nmrOfDepartCust : Integer
cumTimeInSystem : Decimal

CustomerExit

arrivalTime : Decimal

Customer

0..1
1

1

waitingCustomers

*

1

next

1 1

exit

0..1

10..1 next

Entry Node Processing Node Exit Node

Figure 2.21: An information design model for service networks based on PN modeling
concepts.

2.5.2 Process Model

The process model for a service network based on PN modeling concepts looks very much like the mod-
el shown in Figure 2.19, extended by attaching a CustomerEntrance Data Object to the CustomerArrival
Event circle and a CustomerExit Data Object to the CustomerDeparture Event circle.

3 DPMN Language Models

3.1 Control Flow Nodes and Sequence Flows

variableName : String
type : String

ControlFlowNode

ruleVariableDeclarations[*] : VariableDeclaration

Event

Activity

gatewayDirection : GatewayDirection

Gateway

Unspecified
Converging
Diverging
Mixed

«enumeration»
GatewayDirection

condition[0..1] : BooleanExpression
scheduledOccTimeExpr[0..1] : ScheduledOccTimeExpression
eventAttributeAssignments[*] : Assignment
stateChangeStatements[*] : StateChangeStatement

SequenceFlow

target 1 incoming*

source1

outgoing *

Figure 3.1: Control Flow Nodes and Sequence Flows metamodel.

3.2 Data Objects

T.B.D.

4 DPMN Execution Semantics

A DPMN model has a formal semantics in terms of an Abstract State Machine whose state structure
is defined by an object-oriented signature and whose transitions are defined by event rules capturing
causal regularities. A DPMN process design model is composed of event rule design models specifying a
set of event rules, such that the Abstract State Machine semantics proposed in [2] can be applied to a
DPMN model.

Chapter 3: DPMN Language Models

Page 24 (of 25)

References

1. Wagner, Gerd. Information and Process Modeling for Simulation – Part I: Objects and Events. Jour-
nal of Simulation Engineering, vol. 1, 2018. HTML PDF

2. Wagner, Gerd. An Abstract State Machine Semantics For Discrete Event Simulation. In Proceedings
of the 2017 Winter Simulation Conference. Piscataway, NJ: IEEE. PDF

3. Schruben, L. (1983). Simulation Modeling with Event Graphs. Communications of the ACM 26
(957-963). PDF

Chapter 4: DPMN Execution Semantics

Page 25 (of 25)

https://articles.jsime.org/1/1
https://articles.jsime.org/1/jsime-article-1-1.pdf
http://oxygen.informatik.tu-cottbus.de/publications/wagner/WSC2017-DES-ASM-Semantics.pdf
https://dl.acm.org/citation.cfm?id=358460

	Discrete Event Process Modeling Notation (DPMN)
	Summary
	Contents
	Introduction
	Model-Driven Engineering
	Information Modeling with UML Class Diagrams
	Process Modeling with BPMN Process Diagrams
	DPMN and Event Graphs
	DPMN Elements
	Examples
	Example 1: An Event-Based Inventory Management Model
	Information Model
	Process Model
	Example 2: An Event-Based Service Desk Model
	Information Model
	Process Model
	Example 3: An Activity-Based Service Desk Model
	Information Model
	Process Model
	Example 4: An Activity-Based Service Network Model
	A Specific Model
	A Generic Model
	Example 5: Modeling a Network of Processing Nodes
	Information Model
	Process Model
	DPMN Language Models
	Control Flow Nodes and Sequence Flows
	Data Objects
	DPMN Execution Semantics
	References

